Fundamental Skills for Real Estate Development Professionals I

Financial Analysis

Wednesday, October 17
9:15 a.m. – 10:30 a.m.
Topics we’ll cover today

• Key aspects of financial analysis
 – Are the inputs good?
 – Stages of financial analysis – simple to complex
 – Is the return adequate for risk?

• Time value of money
 – PV, DCF, NPV & IRR

• Capital Structure

• Partnership Structure

• Case Study – Georgetown Towers
Are the Inputs Good?

- Or at least as good as you can make them?
- Property seasoning
- Two areas of focus
 - Operating budget (stabilized)
 - Construction cost budget
- Gets you to the magical return on cost
- No point in running returns on unrealistic numbers
Operating Budget

- Revenue
 - Reasonability of rental rates?
 - Plausible lease-up timing?
 - Watch the back door
 - Realistic stabilized occupancy?
 - Really going to 100%?
 - Vacancy and collection loss?
 - Overage rent?
 - Other income?
 - Reimbursement revenue?
Operating Budget

- **Operating Expenses**
 - Controllable vs. Non-controllable (taxes & insurance)
 - Controllable Expenses
 - Assess for reasonability – management fee, contract services, etc.
 - Proper ramp up or ramp down?
 - Marketing goes down over time
 - R&M & make-ready generally go up
 - Non-Controllable Expenses
 - Taxes properly adjusted for assessor’s reaction to development?
 - Quote from an insurance provider?
 - Additional coverage needed?

- **Revenue – Operating Expenses = Net Operating Income**
Construction Cost Budget

- Review key line items for reasonability
- Land cost
 - Can be a touchy issue
- Hard costs
 - Employ $/SF to asset reasonability
 - Adequacy of TI/LC budget
- Soft costs
 - Watch the fees
 - Contingencies
 - Construction loan interest
 - Operating shortfalls
Simplicity First – Return on Cost

• Keep it simple in the early stages

• Return on Cost Analysis
 – Stabilized Net Operating Income/Total Construction Cost
 – Trended vs. Untrended ROC – impact of rent growth?
 – Build wholesale & sell retail
 – Spreads today = 150-250bps
 – Should I continue w/ deal?
 – Compensated for risk?

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Rental Revenue</td>
<td>$1,023,903</td>
<td>$2,047,807</td>
<td>$4,095,613</td>
</tr>
<tr>
<td>Recovery Income</td>
<td>$349,500</td>
<td>$699,000</td>
<td>$1,398,000</td>
</tr>
<tr>
<td>Other Income</td>
<td>$185</td>
<td>$370</td>
<td>$739</td>
</tr>
<tr>
<td>Vacancy Loss</td>
<td>($59,672)</td>
<td>($119,345)</td>
<td>($238,689)</td>
</tr>
<tr>
<td>Effective Gross Income</td>
<td>$1,313,916</td>
<td>$2,627,832</td>
<td>$5,255,663</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>$368,050</td>
<td>$736,099</td>
<td>$1,472,198</td>
</tr>
<tr>
<td>Net Operating Income</td>
<td>$945,866</td>
<td>$1,891,733</td>
<td>$3,783,465</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td></td>
<td></td>
<td>$63,000,000</td>
</tr>
<tr>
<td>Return on Cost</td>
<td></td>
<td></td>
<td>6.0%</td>
</tr>
</tbody>
</table>
• If someone offered you $10,000 today or $10,000 in 1 year, what would you choose...why?

• Dollars at one time, not equivalent to dollars at another

• Not just because of inflation
 – Due to real productivity of capital & risk
 – Future dollars worth less than present dollars

• RE requires comparison of dollars at different time periods

• Solution – present value mathematics
• Future Value (2 periods)
 – FV = (1+r)PV
 • FV = Future Value
 • r = Interest Rate
 • PV = Present Value

– Savings Account Example
 • Deposit $10 today earning 5% interest; value in 1 year
 • FV = (1+.05)*$10
 – FV = $10.50
• **Present Value (2 periods)**
 - \[PV = \frac{FV}{(1+r)} \]
 - \(r \) = discount rate
 - **Inverse of savings account example**
 - You get $10.50 in one year, if you require a 5% return on your investment; how much should you pay?
 - \[PV = \frac{10.50}{1+.05} \]
 - \(PV = $10.00 \)
 - **Multiple periods**
 - \[PV = \frac{FV}{(1+r)^n} \]
 - \(n = \# \) of periods
Multiple periods (cont.)

- Same example but $10.50 earned in 2 years instead of 1
 - $PV = \frac{10.50}{(1+.05)^2}$
 - $PV = 9.52$
 - Less than $10 because of add’l year of 5% interest required.

- Again, savings example is inverse
 - You have $9.52 today. What is that worth in 2 years at 5% interest.
 - $FV = 9.52(1+.05)^2$
 - $FV = 10.50$
• Discounted cash flow
 – Measures the present value of all future cash flows.
 – Fully accounts for the time value of money
 – Allows for variable cash flows
 – Allows for differential growth rates of income and expense components
 – Incorporates value appreciation through reversion
 – Allows cash flows pre- and post-construction

• Produces two key metrics
 – Net Present Value
 – Internal Rate of Return
Net Present Value

- The value \textit{(in terms of today’s dollars)} of all future cash flows, \textit{positive} and \textit{negative}, from the project as discounted by the required rate of return (aka discount rate – 12%), \textit{minus} the cost of acquiring the property.

<table>
<thead>
<tr>
<th>Present Value (@ i = 12%)</th>
<th>Initial investment</th>
<th>Income for each period</th>
</tr>
</thead>
</table>
| \begin{tabular}{c|c|c|c|c|c} \hline ($100.00) & ($100.00) & \$6.00 & \$7.00 & \$8.00 & \$110.00 \\ \hline $5.36 & \$5.58 & \$5.69 & \$69.91 & \end{tabular} | \begin{tabular}{c}
\text{(13.46)} = NPV (sum of all PV's)
\end{tabular} |
The Internal Rate of Return (IRR) is the discount rate (stated as a percentage) at which the present value of future cash flows is exactly equal to the initial capital investment. Specifically:

- It is the rate of return where Net Present Value (NPV) = 0.
- In this example, the IRR of the cash flows is 7.63%.

Table: Income for each period

<table>
<thead>
<tr>
<th>Present Value @ i = 7.63%</th>
<th>Initial investment</th>
<th>Income for each period</th>
</tr>
</thead>
<tbody>
<tr>
<td>($100.00)</td>
<td>($100.00)</td>
<td>$6.00</td>
</tr>
<tr>
<td>$5.57</td>
<td></td>
<td>$7.00</td>
</tr>
<tr>
<td>$6.04</td>
<td></td>
<td>$8.00</td>
</tr>
<tr>
<td>$6.42</td>
<td></td>
<td>$110.00</td>
</tr>
<tr>
<td>$81.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$0.00 = NPV (sum of all PV's)
NPV & IRR

- **NPV > $0 = IRR > required return**
 - Ideal arrangement; definitely pursue

- **NPV = $0 = IRR = required return**
 - Meets return requirements; pursue though less inspired

- **NPV < $0 = IRR < required return**
 - Doesn’t meet return requirements; pass

- IRRs and NPVs are not all created equal
 - Assumptions drive returns
 - Ensure equivalent risk when comparing investments
 - Risk-adjusted returns – fundamental issue
Capital Stack

- Components (% of total capitalization)
 - Construction loan – 50-75%
 - Limited partner equity – 15-45%
 - General partner equity – 5-10%

- Construction Loan
 - Commercial banks are large construction lenders
 - Based upon % of total construction cost (LTC)
 - Lender performs own underwriting - naturally
 - Construction loan types
 - Front-end – most secure for lender
 - Back-end – generally a thing of the past
 - Pari-passu – compromise
Construction Loan – cont.
 - Requires take-out lender in place first
 - More traditional lenders – Life companies
 - Pre-sale concept
 - Generally have 1-4 years of term
 - Interest rate generally Libor based
 - Development costs are funded through draw requests
 - Depending on loan size, can be syndicated
 - LP/GP struggles
 - Net worth covenants – partner
 - Cure rights?
• Already talked about GP & LP
 – Equity contribution 90/10 or 95/5
 – Make sure fees don’t constitute equity
 • “Skin in the game”
 – Key terms
 • Pari Passu – Latin for “on equal footing”
 • Promote – chance for GP to exceed pari passu status
 – Partners participate financially in 2 ways
 • Cash flow
 • Reversion (appreciation)
 – Cash flow generally pari passu, but limited in development deals.
 – Reversion – pari passu until hurdles met
 • GP increases participation in profits as total return increases
Interpreting IRRs

• Generally speaking – 3 sets of IRRs
 – Unleveraged
 – Leveraged
 – Structured
• Unleveraged – limited value; ROC only
• Leveraged – Not diluted by partnership
• Structured – IRR to LP
 – Always compare Leveraged to Structured IRRs
 – Demonstrates impact of partnership terms
 – How much of deal are you giving away?
 • 200-300 bps is typical
Case Study – Georgetown Towers

<table>
<thead>
<tr>
<th>Deal Parameters</th>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost</td>
<td>$100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt</td>
<td>$65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP Equity</td>
<td>$5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP Equity (millions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP Equity</td>
<td>$30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP/LP Funding</td>
<td>$5.0</td>
<td>$22.5</td>
<td>$7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loan Funding</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$42.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reversion Calc

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 4 NOI</td>
<td>$6.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOI</td>
<td>$0.0</td>
<td>$1.6</td>
<td>$3.3</td>
<td>$4.9</td>
<td>$6.5</td>
<td></td>
</tr>
<tr>
<td>Exit Cap</td>
<td>5.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>$(5.0)</td>
<td>$(20.9)</td>
<td>$(4.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversion (less debt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$53.2</td>
</tr>
<tr>
<td>Total CF</td>
<td>$(5.0)</td>
<td>$(20.9)</td>
<td>$(4.3)</td>
<td></td>
<td>$58.1</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>$118.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Debt</td>
<td>$53.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Financial Metrics

- **U/L Return on Cost**: 6.5%
- **Exit Cap Rate**: 5.5%
- **Leveraged IRR**: 37%

Cash Flow Rates

- **GP CF IRR**: $(0.71) 77%
- **LP CF IRR**: $(4.29) 29%